MTH 102 TMA 2 SOLUTIONS
1. Differentiate y = 3 √(x)2
(2x –x2
)
Answer (A)
2. Evaluate the limit
Lim t- √ 3+4
T 4 4 – t
Answer (B)
3. Evaluate
Lim 2 (-3 + h)2
– 18
h 0 h
Answer (A)
4. Given y(x) = x4
– 4x3
+ 3x2
– 5x
Evaluate d4y
dx4
Answer (C)
5. Evaluate the limit
Lim x2
– 5t – 9
X ∞ 2X4
+ 3X2
Answer (C)
6. Given 2x5
+ x2
– 5 Find dy
t2
dx
Answer (D)
7. Find the derivative (fx) = 2x2
– 16x + 35 by using the first principle
Answer (B)
8. Differentiate with respect to x
F(x) = (ax3
+ bx)
Answer (D)
9. Evaluate the limit
Lim 2x4
– x2
+ 8x
X ∞ - 5x4
+ 7
Answer (B)
10. Evaluate the limit
Lim 6e4z – e -2x
X ∞ 8e4x – e2x + 3e-x
Answer (A)
1. Differentiate y = 3 √(x)2
(2x –x2
)
Answer (A)
2. Evaluate the limit
Lim t- √ 3+4
T 4 4 – t
Answer (B)
3. Evaluate
Lim 2 (-3 + h)2
– 18
h 0 h
Answer (A)
4. Given y(x) = x4
– 4x3
+ 3x2
– 5x
Evaluate d4y
dx4
Answer (C)
5. Evaluate the limit
Lim x2
– 5t – 9
X ∞ 2X4
+ 3X2
Answer (C)
6. Given 2x5
+ x2
– 5 Find dy
t2
dx
Answer (D)
7. Find the derivative (fx) = 2x2
– 16x + 35 by using the first principle
Answer (B)
8. Differentiate with respect to x
F(x) = (ax3
+ bx)
Answer (D)
9. Evaluate the limit
Lim 2x4
– x2
+ 8x
X ∞ - 5x4
+ 7
Answer (B)
10. Evaluate the limit
Lim 6e4z – e -2x
X ∞ 8e4x – e2x + 3e-x
Answer (A)
Comments